

Covered in Lecture 4

Concepts

- Circulation system
- Functions of drilling fluid
- Rheological properties and models of drilling fluids
- Rotational Viscometer
- Viscosity and Apparent Viscosity

Calculations

- Viscosity (Ex. 1)
- Apparent viscosity for different readings
- PV and YP for Bingham Plastic model
- *n,K* constants for Power law

The fluid circulation system SWIVEL CIRCULATION SYSTEM ROTARY STAND HOSE PIPE KELLY MUD TANKS DISCHARGE LINE DRILL SUCTION PIPE LINE MUD PUMP **RETURN LINE** DEGASSER ANNULUS DESILTER DRILL DESANDER COLLAR SHALE SHAKER DRILL BIT WTHE UNINERSITY OF TERMS AT AUSTIN A primer of Oilwell Drilling 6th edition

	Circulating System Components
Mud tanks	Mud tanks orpits is used by the crew to prepare the mud for circulation
Mud pumps	One or more pumps thatcirculate the mud up the standpipe and down the drill string. Duplex pumps are most common. Triplex pumps is in use but less common.
Standpipe & Rotary hose	The standpipe takes the mud halfway up the Derrick. The rotary hose is a flexible hose that moves with the swivel as it goes up and down in the mast. The rotary hose is connected to the standpipe and to the Kelly.
	Standpipe pressure is the point where the fluid pressure is measured when the fluid is entering the well.
Drill string & bit The	e mud pump moves the mud down the drill string to the bit. At the bit the mud goes through the nozzles. The mud cleans the cuttings around the bit.
Annulus	Mud transports the cuttings up in the annulus, first in the open hole annulus and then in the cased section of the annulus.
Flow line	Mud goes through the flow line /return line to the shale shaker.
Shale shaker	The shale shakerhas screen thatremoves cutting and the mud falls into the mud tanks where the mud tanks can pump it up again for next circulation cycle.

Example # 3

$$\begin{aligned}
\theta_{600} &= 20 \\
\theta_{300} &= 12
\end{aligned}$$

$$n &= 3.322 \log\left(\frac{\theta_{600}}{\theta_{300}}\right) = 3.322 \log\left(\frac{20}{12}\right) \\
n &= 0.7370
\end{aligned}$$

$$K &= \frac{510 \theta_{300}}{511^{n}} = \frac{510 * 12}{511^{0.737}} = 61.75 \text{ eq. cp}$$

